MEM 733 Applied Optimal Control

Problem Set 2

Professor Harry Kwatny

Consider the decent of the moon lander system:

$$\dot{h} = v$$

$$\dot{v} = -g + k \frac{u}{m}$$

$$\dot{m} = -u$$

The fuel flow rate $\,u\,$ is used to steer the system to $\,h=0, \nu=0\,.$ We wish to minimize the fuel used during landing, i.e.

$$J = \int_0^t u \, dt$$

The system is subject to the control constraint: $0 \le u \le c$, and the state constraint $h \ge 0$. Determine the optimal feedback control.